
Predator Prey Simulation1

Boe Zienko & Brenden Swope (Working with Dr. Becnel & Dr. Nick Long)

Stephen F. Austin State University

Boe Zienko / Brenden Swope
Stephen F. Austin State University
Computer Science
zienkoba@jacks.sfasu.edu / swopeb@jacks.sfasu.edu
(936) 205-7371/ (832) 926-2044

Contact
1. SFA-CS/PredatorPreyProject (github.com)

References

This project was designed to effectively demonstrate how mathematics can
be used to define a movement area for simulating a predator chasing its prey.
Our goal is to create a simulation that closely resembles real-life scenarios. To
achieve this, we have chosen to make both the predator and prey move
simultaneously within this defined movement area. The project serves as a
tool to provide a different perspective on the mathematics behind movement
areas, helping individuals who may struggle to grasp these concepts through
traditional equations.

Abstract
The State Design Pattern is a behavioral design pattern used to allow an
object to change its behavior when its internal state changes, as if the object
has changed its class. It is especially useful when an object needs to change
its behavior dynamically at runtime based on its state.
Here's a simple breakdown of how it works:
1.Context: This is the object that will change behavior based on its state. The
context holds a reference to the current state.
2.State Interface: Defines the common interface for all possible states, listing
the methods that all states must implement.
3.Concrete States: These are the actual classes that represent different states.
Each concrete state class provides specific behavior for the methods defined
in the state interface.
4.Transitioning: The context delegates behavior to the current state object,
and each state can transition the context to a different state.

The base state is just where the avatars start and the other states are called
GameState, GameOverState, PreyTurn, PredatorTurn, and MoveAvatars.

Introduction

The following equations are used to create the Legal Move area of an object
based on the direction the object is facing and the parameters determining
the maximum travel distance and turning radius.

Equation 1. Parameterization of the movement area mesh

(𝑎𝑎, 𝑡𝑡) −> (
1
𝑎𝑎

(1 − cos(𝑑𝑑𝑎𝑎𝑡𝑡),
1
𝑎𝑎

sin(𝑑𝑑𝑎𝑎𝑡𝑡))
- a represents the different angles of movement and ranges from – 1/𝑅𝑅 to

1/𝑅𝑅, where 𝑅𝑅 is the max turning radius.
- t is where an object is in its progression along the path
- d is the max travel distance

 Equation 2. Inverse of x and y coordinate

𝑎𝑎 = 2𝑥𝑥
𝑥𝑥2

+ 𝑦𝑦2

𝑡𝑡 =
𝑥𝑥2+𝑦𝑦2 arctan 𝑥𝑥

𝑦𝑦

𝑑𝑑𝑥𝑥
- x and y are the coordinates where the player clicks

Equation 2 are used to map the clicked point back to the path parameters, so
the path can be created for the objects to follow.

Governing Equations

Options:
-Number of Predators & Prey (1-10)
-Number of Turns (5-20)
-Turn Radius for Predators & Prey (0.5-5.0)
-Max Travel Distance for Predators & Prey (0.5-5.0)
-Proximity (Close, Mid, Far)
-Background
-Predator and Prey Type

Rules:
-Prey Starts first
-User must select an area inside of the move area (highlighted area)
-Both Predator and Prey must select their movement area before the
simulation advances and moves both at the same time
-The Predator must connect with the Prey to capture it and win the game

Simulation Options and Rules

As of now our project is working in the 2D model, however we do not want to
just stop there. We have plans for the future to later transform the project to
not just a 3D model but also implementing it into virtual reality. This
translation from a 2D model to a 3D VR model will allow the users to get a
greater understanding of our simulation and hopefully see it from another
light.

Future Work

This Project is a Unity-based simulation that allows the user to control both a
Predator and Prey in a turn-based system. We use Unity as our development
tool to create our project with. Unity is a programming software that allows
the user to create projects in 2D or 3D. Unity also allows for real-time
manipulation of your project, such as a simulation. This lets the user move
the different aspects, such as the models, around as needed. Unity, along
with the previously mentioned tools, comes with a plethora of other tools
available to all users to help them create projects.

When the project is launched, you will be greeted by the main menu screen.
From there, you can start the simulation, change the settings in the options
menu, or exit the game.

The options panel allows the user to control several aspects of the simulation,
such as the number of prey and predators, the number of turns, and some of
the properties that control the movement area.

Once the simulation is started, then, you can either zoom in, zoom out, or
reset the camera. You can also control the avatars, starting with the prey
avatars, and then you move the predators. Once both sides are selected, they
move, and the turn counter increases by 1. There are 2 ways for the
simulation to end: 1) the prey survives until the round counter runs out, at
which time the Prey will win. 2) the predators can also take out all the prey,
and then the predators win.

State Design Patterns

Figure. Legal move area generation

Figure. Predator/Prey Simulation Running

Figure. Game State Diagram

mailto:zienkoba@jacks.sfasu.edu
mailto:swopeb@jacks.sfasu.edu
https://github.com/SFA-CS/PredatorPreyProject

	Slide Number 1

