
The second and current version of Megordle was translated from java into C#
so that it could be implemented in Unity. Although most of the logic
converted with little issue, there were some methods that had to be
reconfigured to better suit C#.

One example is the aforementioned method of preventing repetition.
Originally, the usedWords HashMap was directly translated into C#’s version
of a HashMap, the Dictionary. This was later changed when I discovered C#’s
List held only one parameter instead of the two that the Dictionary required
and had a .get() method. The List was implemented to just take the word that
was being used and allowed for the used words to be stored more efficiently.

Converting to Unity

Megordle: A Wdolre Usclnbaermr
Meg Arney, Department of Computer Science

Faculty Advisor: Dr. Matthew Beauregard

Meg Arney, Dr. Matthew Beauregard
Department of Computer Science
P.O. Box 13063, SFA Station
Nacogdoches, Texas 75962
Arneymm@jacks.sfasu.edu
936.468.2508

Contact
1. Word Frequency data (https://www.wordfrequency.info/intro.asp)
2. The Oakland Press (https://www.theoaklandpress.com/2022/06/12/the-brain-boosting-benefits-of-word-games/)

References

Our goal was to make a dynamic word unscrambler app based on the random
generation of words from a database.

The original database contains 4,320 of the most common words in the
English language.

This project was originally designed in Visual Studio Code in java and takes
input from the terminal. The project was later translated into C#, transferred
into Unity, and provides a visual and dynamic interface for users.

Abstract

Benefits

The first version of Megordle was designed and implemented in Visual Studio
Code in java and takes input from the terminal. This was where the logic for
the game was designed. Such logic includes but is not limited to:

• Sorting the database
• Selecting a word length
• Preventing repetition
• Adding unused letters
• Scrambling the word

Strategies had to be developed and tested for each of these categories. For
example, when finding a method to prevent repeating words, the first idea
discussed was to create a List for the words that had already been used and
iterate through that List when selecting a word to make sure it did not already
exist in that List. This strategy was eventually scrapped in favor of using a
HashMap called usedWords that stored the word sorted alphabetically in its
key and the word in its value. This decreased the time complexity and allowed
for an easier method of checking if the word was already stored by checking
whether or not the method .get(word) returned null.

Terminal-Based Solution

According to The Oakland Press, word games build vocabulary, improve focus,
stimulate the brain, and release endorphins, in addition to providing
entertainment. Word games have also caused an improvement in memory,
cognitive skills, concentration, and problem solving.

Figure 1 A graph displaying the methods for the
terminal-based solution

• Attempts system
• Checking guess
• Hint system
• Point system

Unity-Based Solution
The Unity-based version of Megordle was built with Unity and used assets
found on itch.io. Aside from the code conversions, the input and output for
this version had to be greatly changed and improved upon.

One example is how data is saved for the game. In Unity, PlayerPrefs is a class
that stores Player preferences between game sessions. They can store strings,
floats, or integer values into the user’s platform registry.

PlayerPrefs were used in order to save a list of words the player has not
encountered yet. The databases for each of the levels is a text file where all of
the words are on one line and are separated by commas. These text files are
connected to the game in Unity’s Inspector as TextAssets. If it is the first time
the player has opened the game or they have reset their data, the text files
are pulled and put into a string that is saved in a PlayerPref called
“FiveLetterList”, “EightLetterList”, and “TwelveLetterList”, respectively. The
words are then separated into three different Lists; one for level 1, level 2,
and level 3.

When a game is selected, the word for that game is removed from their List. If
the player leaves the game, the Lists are individually converted to a string
where each word is separated by a comma and stored in the associated
LetterList PlayerPref. When the player opens the game again, these strings are
converted back into Lists from which the words are randomly selected.

Unity Assets
Icons: https://penzilla.itch.io/vector-icon-pack?download
Font: https://ggbot.itch.io/kaph-font?download
Music: https://not-jam.itch.io/not-jam-music-pack
Sound effects: https://ellr.itch.io/universal-ui-soundpack

Inspirations and Influences
This game was originally based off a puzzle in an IQ puzzle book that
displayed letters in a random order across a graph. The goal of this puzzle was
to follow the edges and nodes of the graph to find the longest word without
reusing edges or nodes. Leaning into the random order of the nodes in this
graph, the game was developed as a word unscrambler where the user
is given a scrambled word and are tasked to figure out what the word
unscrambled to.

After play-testing the unscrambler, there was a desire to have some form of a
hint or confirmation that the player was on the right track. Thus, inspiration
was taken from Wordle. This was implemented so that if a player typed their
guess into the terminal, the terminal would give a wordle-like output. For
example, if the word was “court”, the scrambled word displayed as “rtcuo”,
and the player guessed “cortu”, then the terminal would output “c o _ _ _”.

Figure 2 A demo of the
Terminal-Based version

Figure 3 A screenshot displaying a test game of the Unity-Based version
playing level 1 difficulty 2

Figure 4 A demo of the
Unity-Based version

In order for the game to allow for different word lengths, we needed to
develop a way for users to select how long the word would be. To do this, we
developed a system for users to select a level. Users can select between 3
levels: Level 1 (5 letters), Level 2 (8 letters), or Level 3 (12 letters).

To increase the difficulty of the game, we provided a way for users to be given
extra letters that were unused in the word. To do this, we developed a system
for users to select a difficulty. Users may select between 3 difficulties: Level 1
(no extra letters), Level 2 (1 extra letter), or Level 3 (2 extra letters).

Selecting A Word Length and Increasing Difficulty

Future Directions
Megordle is working towards becoming accessible to anyone who wants to
play it on desktop with hopes that it will also be fitted to be downloadable on
mobile devices.

• Streak system
• Cash system
• Market
• Help menu

	Slide Number 1

