
Implementing Facial Recognition Authentication in Physical Access Control System

Job Adegede (Student), Dr. Christopher Ivancic (Supervisor/PI)

Stephen F. Austin State University, Texas

Dr. Christopher Ivancic
Stephen F Austin State University,
1936 North street, Nacogdoches 75961
ivanciccp@sfasu.edu

Contact
1. https://face-recognition.readthedocs.io/en/latest/face_recognition.html
2. https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
3. https://github.com/carolinedunn/facial_recognition?tab=readme-ov-file
4. https://ieeexplore.ieee.org/document/990517
5. https://snyk.io/blog/guide-to-python-pickle/
6. https://pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/
7. https://picamera.readthedocs.io/en/release-1.13/api_array.html
8. https://core-electronics.com.au/guides/solenoid-control-with-raspberry-pi-relay/#:~:text=Connect%20the%20Ground%20Pin%20of,either%20to%20open%20or%20close
9. https://projects.raspberrypi.org/en/projects/getting-started-with-picamera/1
10. https://www.geeksforgeeks.org/python-smile-detection-using-opencv/?ref=lbp

References

With the rise in data security threats, authentication systems have adopted

innovative ways of identifying users like facial recognition. Biometric credentials

unlike other forms, relies on the individual’s distinctive biological features like

fingerprints, iris, face, voice, etc., to verify identity. Facial recognition

authentication is still considered a relatively new application with more

improvements still anticipated even as it has seen rapid adoption in the last

decade. Current developments are mostly based on machine learning algorithms

like Opencv, Keras, Tensorflow, Pytorch etc. This effort is focused on the

development of facial recognition as the authentication module for a physical

access control system. It uses the Opencv pre-trained model and Python’s

face_recognition library for human face detection and recognition. In a bid to

achieve higher detection and recogniton rates, dual Haar cascades - face and

eyes, were used in combination with the Histogram of Oriented Gradients

transform. Another major point of improvement over existing efforts is the

adoption of memory-resident 128-dimensional embeddings vector dictionary

structure for stored enrolled user data. This surpasses byte stream storage

formats like Python pickle, BSON, JSON etc., by removing security risks

associated with serialized/de-serialized structures. The resulting accuracy of the

facial authentication subsystem, has produced no false positive identification

after over 300 transactions, complemented with responsive electronic lock

actuation in response to authentication passes or fails

Abstract

The outcome of this work is a concept model of a facial recognition physical

access control system running on a Raspberry pi-4 unit and connected to a

camera and electronic lock.

Authentication tests so far conducted has not recorded a false positive result after

processing over 300 images and counting. More tests are expected carried out in

the near future

Introduction Methodology

It’s noteworthy to mention that this project was initially designed to deliver a Multi-

Factor authentication system with voice recognition as primary credential, and

facial recognition as secondary. However, upon closer assessments and

requirements testing, it came to light that 2 challenges stood in the way which

were:

❑Insufficient computing power

Voice or speaker recognition systems are currently only available as pre-trained

neural network systems which must be further trained using GPUs. The hardware

requested by the researcher unfortunately fell short of these requirement and the

inadequacy was not revealed at the outset

❑Considerable time requirement

To train a voice model required between 300 to 1500 recorded voice samples

covering various speech patterns, tones and expressions for each user meant for

enrollment

These were the 2 considerations that refocused the project scope towards

implementing facial recognition as current hardware and available time were

deemed adequate for it.

Discussion

Existing efforts in this study context. Adopting multiple Haar cascade classifiers improved

detection and encoding accuracy.

Security of the system was also significantly improved by employing the ML model available

in the face_recognition.face_encodings() function, which generated the 128-dimensional

embeddings vector data structure persistently resident in memory without the need for

storage to disk.

The project has been challenging but it has also opened opportunities to new interesting

areas in the computer vision domain for further study

Conclusions

Facial recognition has been increasingly embraced as acceptable authentication

medium for both physical and electronic access to resources and assets. The

objective of this work is to build a physical access control system that use facial

recognition as authentication module. Among the various package options

analyzed for use as core engine for the system, opencv was chosen because of

its unique advantages like real-time vision support, speed, large user/support

community, tested feature-set, and considerable documentation accumulated

over the years.

This work aimed for improvement over reviewed existing efforts in 2 ways:

- Employing multiple cascade classifiers

- Remove risk factor associated with byte stream storage formats for enrolled

user data.

A review of existing works quickly revealed a direct relationship between false

positive outcomes and the number of cascade classifiers applied in the detection

process. Applying more classifiers created less opportunity for false positive

results as the added eyes dimension created for a more rigorous identification

process. The opencv implementation of the Haar Cascades algorithm by Paul

Viola and Michael Jones, developed in 2001, was used.

Another improvement opportunity was in the area of object persistence in code.

Most facial recognition developments use byte stream-based formats for storing

both primitive or custom types, for future use in code. These formats have been

frequently associated with insecurities which would be unsuitable for an

authentication system. It was in this vein that this implementation opted for the

pre-trained Machine Learning (ML) option provided by the

face_recognition.face_encodings() function. This improved security by

eliminating the need to save encoded data to disk, but rather persisted enrolled

user database in code as a 128-dimensional embeddings vector running in
memory throughout code execution.

Results

Table 1.: Materials

Hardware Purpose

i. Raspberry Pi-4B device System core device – software & hardware I/O module
i. Electronic lock mechanism Demonstrate physical access control response
i. Raspberry pi module-2 camera Capture user images and videostream

❑ Live image capture and face object detection for authorized user enrollment

using VideoStream(usePiCamera=True).start() function and human face and

eyes cascade classifiers

❑ Eye object classification within face region of interest using

eyeCascade.detectMultiScale(roi_face) before storage to dataset repository

❑ Saved image processing using Histogram of Oriented Gradients (HOG) and

unique feature descriptor generation as a 128-dimensional embedding vector

using face_recognition.face_encodings()

❑ Persistent video monitoring module on-the-ready for capturing real-time

images from new users

❑ Comparison of new user image encoding with encoded 128-dimensional

embedding vector of enrolled users using face_recognition.compares_faces()

❑ Access grant or deny response demonstrated by lock release or arming

❑ Screen display of active identification progress bar of verified user’s motion in

camera focus

Solution Description

The facial recognition system was designed as the authentication module of a

physical access control system. Various components of this implementation

includes:

Software Purpose

i. Opencv library Object detection, recognition, classification and

tracking

i. Face_recognition.py API for face detection and recognition

i. Haar Cascade classifiers Human face and eyes detection and classification

i. Imutils library Image processing: resizing, translation, rotation, etc.

i. Imutils.video Video streaming

i. Numpy Numerical operations

i. Tqdm Progress bar functionality

i. Time Time-related tasks

From the initial design where the system was intended to perform authentication on voice or

speaker recognition as primary credential, it’s still desired to have the voice module

integrated in the future in order to realize the original objective of this study. With the

constraint of time more accurately understood now, a more informed project plan can be

made which will improve the chances of success

Future Work

https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://github.com/carolinedunn/facial_recognition?tab=readme-ov-file
https://ieeexplore.ieee.org/document/990517
https://snyk.io/blog/guide-to-python-pickle/
https://pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/
https://picamera.readthedocs.io/en/release-1.13/api_array.html
https://core-electronics.com.au/guides/solenoid-control-with-raspberry-pi-relay/#:~:text=Connect%20the%20Ground%20Pin%20of,either%20to%20open%20or%20close
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera/1

	Slide 1

