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This poster aims to provide an overview of compressive sensing and its
developments in radar applications. Conventional radar imaging techniques
require acquiring many measurements to reconstruct the scene [1]. The
advantages of compressed sensing, or compressed sampling, are low energy
consumption, high-speed measurements, and revolutionary data acquisition
[2][3]. There are many techniques for solving the compressed sensing problem.
Chaotic frequency signals present advantages by having a wider bandwidth,
contriving noise, and easy generation using a Bernoulli map [4], and they can be
used in compressive radar. Using MATLAB, a radar scene was simulated, and
compressive sensing techniques were implemented. The disciplined convex
programming algorithm CVX was used to reconstruct the radar scene [5] from the
simulated radar measurements. Convex programming provides the most accurate
results when reconstructing data at the cost of high computational complexity. In
addition to CVX, other greedy algorithms can be used to solve a radar signal's
compressed sensing problem that requires further understanding [6].

Abstract

Radar scenes are generally sparse and do not require any transformations in their
domain before compression. Figure 5 shows the reconstructed radar scene that
was measured. The scene is considerably sparse in its dimension when comparing
the white signals to the black background. The white values can be assigned as
non-zero entries in a sparse vector. Additionally, The measurements 𝜣 from (1)
must also be incoherent with respect to the sparsity basis [3]. If these conditions
are met, then the scene is easily compressible. Chaotic signals provide advantages
when measuring a radar scene. Chaotic signals are easily generated through a
random unique process, have a wide band frequency range, and behave like
pseudo noise [4]. These prosperities make it more difficult for the targets to
decode the signal being emitted from the radar. Figure 6 demonstrates the
emitted signal reflected by the targets residing in the scene.

Introduction

Chaotic-based frequency modulated signals (CBFM) can be generated from several
different chaotic maps. The Bernoulli map was chosen because it remained chaotic
throughout its generation [4]. The generation of the map consists of choosing a
random number between zero and one and subtracting 0.5. This initial value will
build an iterative sum where each iterative component is stored in a vector 𝑥𝑘 to
build the signal s 𝑛 .

𝑠 𝑛 = 𝐴𝑒 𝑗2𝜋𝐾 σ𝑘=0
𝑁 𝑥𝑘 (2)

Where A is amplitude, j is the imaginary number, and K is the modulation index.
The sum will iterate until the length of the square measurement matrix. The
generated signal and reduced measurement matrix allows the use of convex

Methods

optimization can be used to solve the underdetermined system of linear equations
[5]. Using (1) can be turned into a convex 𝑙1 norm minimization problem [2].

ො𝒔 = min
𝑠

𝒔 1 subject to 𝒚 = 𝜣𝒔 (3)

The sparse vector ො𝒔 has the fewest nonzero entries and efficiently solves the
compressed sensing problem. The signal can now be reconstructed with minimal
accuracy loss given by the new equation.

𝒚 = 𝜣ො𝒔 (4)

Discussion

CVX solves the compressed sensing problem efficiently but at the cost of high 
computation from the computer processing the signal [6]. It is believed that other 
optimization algorithms exist that can solve these radar problems with the same 
amount of accuracy while also processing the signal at a faster rate. Chaotic 
signals are easy to generate and provide discreet detection of moving targets. 
Further research is required to understand other algorithms and compare them to 
CVX in simulation testing. 

Conclusions

Compressive sensing is a signal processing technique that efficiently measures and
reconstructs data by finding solutions to an underdetermined system of linear
equations. The issue with an underdetermined system is that there are infinitely
many solutions. One of the conventional methods is to use the Shannon Nyquist
sampling rate. The theorem states, “measurements must be taken at twice the
rate of the maximum frequency,” known as the Nyquist rate [1]. However, the
frequency of the signals may not be known or chaotically modulated.
Furthermore, taking measurements at a high rate of speed creates a higher cost in
data and power consumption. Other optimization techniques are explored to solve
the linear system

𝒚 = 𝜣𝒔 (1)
𝒚 is the received signal, and 𝜣 is the measurement matrix shown in Figure 1 and
Figure 2. Solving for the sparse vector 𝒔 will give a unique reconstruction of 𝒚. To
satisfy the optimization problem, 𝒔 must have the sparsest solution. A sparse
solution has very few non-zero elements compared to its dimension. It is possible
to collect dramatically fewer measurements that are randomly sampled and then
solve for the non-zero elements in 𝒔 [2]. Figure 3 shows the reduced measurement
that appears more granular than Figure 1. Figure 4 demonstrates that random
columns of the matrix can be removed and will not affect the reconstructed scene.

Results

Figure 1. Measurement Matrix. Figure 2. Zoomed in Matrix.

Figure 3. Reduced Measurement. Figure 4. Zoomed in Matrix.

Figure 5. Figure 6.

Figure 7. Figure 8.

The original radar scene is identical to the reconstructed scene using CVX shown in 
Figure 5. The original scene was not included to save space for this presentation. 
Before using CVX, the scene was placed into a vector space like in Figure 7. The 
reconstructed vector is also identical to its original measurement. However, the 
CVX program is not perfect and will rebuild the scene within 95% accuracy. The 
match filter results can be used to reconstruct the scene. The filter compares the 
received signal on the convolution axis for each iteration and outputs correlation. 
The peaks in Figure 9 represent a high signal-to-noise ratio, indicating that a target 
is present in the measured setting. A negative correlation is not a detection of a 
target and represents an inverse correlation between signals.
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Figure 9.
Represents a 3D surface of the matched Filter.

Where each iteration can be represented as cross section
of Figure 8 
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