CSCI 5365 - COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

CREDIT HOURS: 3
PREREQUISITES: Nine advanced hours of CSCI (CSCI 2314 is recommended)
GRADE REMINDER: Must have a grade of C or better in each prerequisite course.

CATALOG DESCRIPTION

PURPOSE OF COURSE

To study the structural and functional organization of computers and to understand the design issues and tradeoffs for Von Neumann and parallel processing architectures.

EDUCATIONAL OBJECTIVES

The goal of this course is to have students develop the concepts and skills required to evaluate new computer design approaches and parallel processing techniques. Student evaluation will be based on successful completion of progressively more advanced laboratory problems, performance on homework assignments, and analysis of test responses. Specific skills include:

1. Demonstrate knowledge of the issues and problems in computer architecture.
2. Develop skills in analysis and design of new architectures based on existing and proposed systems.
3. Relate design and analysis techniques to application performance requirements.
4. Explore performance enhancement issues including superscalar, superpipelined designs, caching techniques, multiple computational units, and I/O subsystems strategies.
5. Apply analysis of component interaction to performance.
6. Develop knowledge of parallel algorithms, techniques, and tools.
7. Enhance problem solving through parallel algorithm development and analysis.

COURSE CALENDAR

This course meets for a minimum of 37.5 lecture contact hours during the semester, including the final exam. Students have significant assignments based on readings from the primary literature, participate in classroom discussions regarding current research topics, complete periodic homework and laboratory/programming assignments, and periodic exams in addition to the final exam. Students are expected to prepare for any class assignments or quizzes over the material covered in class or in the reading material. Successful completion of these activities requires at a minimum six additional hours of outside of classroom work each week.

CONTENT

<table>
<thead>
<tr>
<th>Overview of Machine Levels (Historical and Contemporary)</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design trends and issues (RISC vs CISC, future)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Systems Organization</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processors, memory, I/O, classification, technology</td>
<td>7</td>
</tr>
</tbody>
</table>
Paradigms and Models

Performance ... 3
 Metrics and Benchmarks
 Speedup and Scalability

Pipelining and Vector Processing .. 3
 Principles, classification, reservation tables, buffers, prefetching, forwarding, hazards

Superscalar Processing .. 3
 Functional structures, processes, tasks, threads, interconnection networks and buses,
 parallel memory, concurrency

Parallel Algorithms .. 9
 Concepts, Terminology, Issues
 Processes, Threading, Timing

Parallel Algorithm Design .. 9
 Models, Partition, Communication, Mapping
 MPI and OpenMP

Parallel Algorithms Examples and Implementation 3
 Graphs, Matrices, Numeric and Non-numeric
 MPI and OpenMP

Advanced Architectures .. 3
 Data Flow, GRID, Biological, Optical
 Example systems

Exams (plus final) ... 3

TOTAL 45

REFERENCES

Flynn, M., Computer Architecture, Jones and Bartlett, 1995.

